Participation of the gut microbiome in the regulation of skeletal muscle metabolism
- Autores: Astratenkova I.V.1, Rogozkin V.A.2
-
Afiliações:
- Saint Petersburg State University
- Saint Petersburg Research Institute of Physical Culture
- Edição: Volume 51, Nº 3 (2025)
- Páginas: 98-109
- Seção: ОБЗОРЫ
- URL: https://www.journal-ta.ru/0131-1646/article/view/684030
- DOI: https://doi.org/10.31857/S0131164625030102
- EDN: https://elibrary.ru/TPZTSL
- ID: 684030
Citar
Resumo
The gut microbiota contributes to the regulation of skeletal muscle metabolism in various human functional states through a variety of formed metabolites that can be used as energy substrates or are signaling and regulatory molecules. The review presents the results of studies on the effects of bacterial short-chain fatty acids on signaling pathways regulating skeletal muscle metabolism and providing increased physical performance and improved human health.
Palavras-chave
Texto integral

Sobre autores
I. Astratenkova
Saint Petersburg State University
Autor responsável pela correspondência
Email: astratenkova@mail.ru
Rússia, St. Petersburg
V. Rogozkin
Saint Petersburg Research Institute of Physical Culture
Email: astratenkova@mail.ru
Rússia, St. Petersburg
Bibliografia
- Human Microbiome project consortium. Structure, function and diversity of the healthy human microbiome // Nature. 2012. V. 486. № 7402. P. 207.
- Tierney B.T., Yang Z., Luber J.M. et al. The landscape of genetic content in the gut and oral human microbiome // Cell Host Microbiome. 2019. V. 26. № 2. P. 283.
- Agirman G., Yu K.B., Hsiao E. Signaling inflammation across the gut-brain axis // Science. 2021. V. 374. № 6571. P. 1087.
- Allaband C., McDonald D., Vazquez-Baeza Y. et al. Microbiome 101: Studing, analyzing, and interpreting gut microbiome for clinicians // Clin. Gastroenterol. Hepatol. 2019. V. 17. № 2. P. 218.
- Park C.H., Lee E.J., Kim H.L. et al. Sex-specific associations between gut microbiota and skeletal muscle mass in a population-based study // J. Cachexia Sarcopenia Muscle. 2022. V. 13. № 6. P. 2908.
- Chew W., Lim Y.P., Lim W.S. et al. Gut-muscle crosstalk. A perspective on influence of microbes on muscle function // Front. Med. (Lausanne). 2023. V. 9. P. 1065365.
- Barton W., Penney N.C., Cronin O. et al. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularity at the functional metabolic level // Gut. 2018. V. 67. № 4. P. 625.
- Wegierska A.E., Charitos J.A., Topi S. et al. The connection between physical exercise and gut microbiota: implications for competitive sports athletes // Sports Med. 2022. V. 52. № 10. P. 2355.
- Sales K.M., Reimer R.A. Unlocking a novel determinant of athletic performance: The role of the gut microbiota, shortchain fatty, and biotics in exercise // J. Sports Health Sci. 2023. V. 12. № 1. P. 36.
- Arcidiacono S., Soares J.W., Karl J.P. et al. The current state and future direction of DoD gut microbiome research: A summary of the first DoD gut microbiome informational meeting // Stand. Genomic Sci. 2018. V. 13. P. 5.
- Giron M., Thomas M., Dardevet D. et al. Gut microbes and muscle function: can probiotics make our muscles stronger? // J. Cachexia Sarcopenia Muscle. 2022. V. 13. № 3. P. 1460.
- Thaiss C.A. A microbiome exercise // Science. 2023. V. 381. № 6653. P. 38.
- Yin Y., Guo Q., Zhou X. et al. Role of brain-gut- muscle axis in human health and energy homeostasis // Front. Nutr. 2022. V. 9. P. 947033.
- Gomes S.D., Oliveira C.S., Azevedo-Silva J. et al. The role of diet related short -chain fatty acids in colorectal cancer metabolism and survival: Prevention and therapeutic implications // Curr. Med. Chem. 2020. V. 27. № 24. P. 4087.
- Psichas A., Sleeth M., Murphy K.G. et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents // Int. J. Obes. (London). 2015. V. 39. № 3. P. 424.
- Caspari G., Swann J. Small talk: Microbial metabolites involved in the signaling from microbiota to brain // Curr. Opin. Pharmacol. 2019. V. 48. P. 99.
- Vicentini F.A., Keenan C.M., Wallace L.E. et al. Intestinal microbiota shapes gut physiology and regulates enteric neurons and glia // Microbiome. 2021. V. 9. № 1. P. 210.
- Jena P.K., Sheng L., Lucente J. et al. Dysregulated bile acid synthesis and dysbiosis are implicated in Western diet-induced systemic inflammation, microglial activation, and reduced neuroplasticity // FASEB J. 2018. V. 32. № 5. P. 2866.
- Bosi A., Banfi D., Bistoletti M. et al. Tryptophan metabolites along the microbiota-gut-brain axis: an interkingdom communication system influencing the gut in health and disease // Int. J. Tryptophan Res. 2020. V. 13. P. 1178646920928984.
- Hinkley J.M., Yu G., Standley R.A. et al. Exercise and ageing impact the kynurenine/tryptophan pathway and metabolite pools in skeletal muscle of older adults // J. Physiol. 2023. V. 601. № 11. P. 2165.
- Shenkman B., Sharlo K. [How muscle activity controls slow myosin expression] // Ros. Fiziol. Zh. Im. I.M. Sechenova. 2021. V. 107. № 6–7. P. 669.
- Qi R., Sun J., Qiu X. et al. The intestinal microbiota contributes to the growth and physiological state of muscle tissue in piglets // Sci. Rep. 2021. V. 11. № 1. P. 11237.
- Lahiri S., Kim H., Garcia-Perez I. et al. The gut microbiota influences skeletal muscle mass and function in mice // Sci. Transl. Med. 2019. V. 11. № 502. P. eaan5662.
- Maruta H., Yoshimura Y., Araki A. et al. Activation of AMP-activated protein kinase and stimulation of energy metabolism by acetic acid in L6 myotube cells // PLoS One. 2016. V. 11. № 6. P. e0158055.
- Maruta H., Yamashita H. Acetic acid stimulates G-protein-coupled receptor GPR43 and induces intracellular calcium influx in L6 myotube cells // PLoS One. 2020. V. 15. № 9. P. e0239428.
- Scheiman J., Luber J.M., Chavkin T.A. et al. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism // Nat. Med. 2019. V. 25. № 7. P. 1104.
- Lee M.C., Hsu Y.J., Chuang H.L. et al. In vivo ergogenic properties of the bifidobacterium longum OLP-01 isolated from a weightlifting gold medalist // Nutrients. 2019. V. 11. № 9. P. 2003.
- Lee M.C., Hsu Y.J., Ho H.H. et al. Lactobacillus salivarius subspecies salicinius SA-03 is a new probiotic capable of enhancing exercise performance and decreasing fatigue // Microorganisms. 2020. V. 8. № 4. P. 545.
- Zhou Y., Chu Z., Luo Y. et al. Dietary polysaccharides exert anti-fatigue functions via the gut-muscle axis: advances and prospectives // Foods. 2023. V. 12. № 16. P. 3083.
- Cho Y.M., Fujita Y., Kieffer T.J. Glucagon-like peptide-1: Glucose homeostasis and beyond // Annu. Rev. Physiol. 2014. V. 76. P. 535.
- Müller T.D., Finan B., Bloom S.R. et al. Glucagon-like peptide 1 (GLP-1) // Mol. Metab. 2019. V. 30. P. 72.
- Huber H., Schieren A., Holst J.J., Simon M.-C. Dietary impact on fasting and stimulated GLP-1 secretion in different metabolic conditions – a narrative review // Am. J. Clin. Nutr. 2024. V. 119. № 3. P. 599.
- Han X., Wang Y., Zhang P. et al. Kazak fecal microbiota transplantation induces short-chain fatty acids that promote glucagon-like peptide-1 secretion by regulating gut microbiota in db/db mice // Pharm. Biol. 2021. V. 59. № 1. P. 1077.
- Chambers E.S., Viardot A., Psichas A. et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults // Gut. 2015. V. 64. № 11. P. 1744.
- Freeland K.R., Wolever T.M.S. Acute effects of intravenous and rectal acetate on glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumor necrosis factor-alpha // Br. J. Nutr. 2010. V. 103. № 3. P. 460.
- Lui J.C. Gut microbiota in regulation of childhood bone growth // Exp. Physiol. 2024. V. 109. № 5. P. 662.
- Suta S., Ophakas S., Manosan T. et al. Influence of prolonged whole egg supplementation on insulin-like growth factor 1 and short-chain fatty acids product: Implications for human health and gut microbiota // Nutrients. 2023. V. 5. № 22. P. 4804.
- Schwarzer M., Makki K., Storelli G. et al. Lactobacillus plantarum strain maintains growth of infant mice during chronic under nutrition // Science. 2016. V. 351. № 6275. P. 854.
- Yan J., Herzog J.W., Tsang K. et al. Gut microbiota induce IGF-1 and promote bone formation and growth // Proc. Natl. Acad. Sci. 2016. V. 113. № 47. P. E7554.
- Li L., Chen L., Yang Y. et al. Characteristics of gut microbiome and its metabolites, short-chain fatty acids, in children with idiopathic short stature // Front. Endocrinol. 2022. V. 13. P. 890200.
- Kraemer W.J., Ratamess N.A., Hymer W.C. et al. Growth hormone(s), testosterone, insulin-like growth factors, and cortisol: Roles and integration for cellular development and growth with exercise // Front. Endocrinol (Lausanne). 2020. V. 11. P. 33.
- Li G., Jin B., Fan Z. Mechanisms involved in gut microbiota regulation of skeletal nuscle // Oxid. Med. Cell. Longev. 2022. V. 2022. P. 2151191.
- Clauss M., Gérard P., Mosca A., Leclerc M. Interplay between exercise and gut microbiome in the context of human health and performance // Front. Nutr. 2021. V. 8. P. 637010.
- Zhou Y., Wu Q., Yu W. et al. Gastrodin ameliorates exercise-induced fatigue via modulating Nrf2 pathway and inhibiting inflammation in mice // Food Biosci. 2023. V. 51. P. 102262.
- Spragge F., Bakkeren E., Jahn M.T. et al. Microbiome diversity protects against pathogens by nutrient blocking // Science. 2023. V. 382. № 6676. P. eadj3502.
- Badal V.D., Vaccariello E.D., Murray E.R. et al. The gut microbiome, aging, and longevity: A systematic review // Nutrients. 2020. V. 12. № 12. P. 3759.
Arquivos suplementares
