Participation of the gut microbiome in the regulation of skeletal muscle metabolism
- Авторлар: Astratenkova I.V.1, Rogozkin V.A.2
-
Мекемелер:
- Saint Petersburg State University
- Saint Petersburg Research Institute of Physical Culture
- Шығарылым: Том 51, № 3 (2025)
- Беттер: 98-109
- Бөлім: ОБЗОРЫ
- URL: https://www.journal-ta.ru/0131-1646/article/view/684030
- DOI: https://doi.org/10.31857/S0131164625030102
- EDN: https://elibrary.ru/TPZTSL
- ID: 684030
Дәйексөз келтіру
Аннотация
The gut microbiota contributes to the regulation of skeletal muscle metabolism in various human functional states through a variety of formed metabolites that can be used as energy substrates or are signaling and regulatory molecules. The review presents the results of studies on the effects of bacterial short-chain fatty acids on signaling pathways regulating skeletal muscle metabolism and providing increased physical performance and improved human health.
Негізгі сөздер
Толық мәтін

Авторлар туралы
I. Astratenkova
Saint Petersburg State University
Хат алмасуға жауапты Автор.
Email: astratenkova@mail.ru
Ресей, St. Petersburg
V. Rogozkin
Saint Petersburg Research Institute of Physical Culture
Email: astratenkova@mail.ru
Ресей, St. Petersburg
Әдебиет тізімі
- Human Microbiome project consortium. Structure, function and diversity of the healthy human microbiome // Nature. 2012. V. 486. № 7402. P. 207.
- Tierney B.T., Yang Z., Luber J.M. et al. The landscape of genetic content in the gut and oral human microbiome // Cell Host Microbiome. 2019. V. 26. № 2. P. 283.
- Agirman G., Yu K.B., Hsiao E. Signaling inflammation across the gut-brain axis // Science. 2021. V. 374. № 6571. P. 1087.
- Allaband C., McDonald D., Vazquez-Baeza Y. et al. Microbiome 101: Studing, analyzing, and interpreting gut microbiome for clinicians // Clin. Gastroenterol. Hepatol. 2019. V. 17. № 2. P. 218.
- Park C.H., Lee E.J., Kim H.L. et al. Sex-specific associations between gut microbiota and skeletal muscle mass in a population-based study // J. Cachexia Sarcopenia Muscle. 2022. V. 13. № 6. P. 2908.
- Chew W., Lim Y.P., Lim W.S. et al. Gut-muscle crosstalk. A perspective on influence of microbes on muscle function // Front. Med. (Lausanne). 2023. V. 9. P. 1065365.
- Barton W., Penney N.C., Cronin O. et al. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularity at the functional metabolic level // Gut. 2018. V. 67. № 4. P. 625.
- Wegierska A.E., Charitos J.A., Topi S. et al. The connection between physical exercise and gut microbiota: implications for competitive sports athletes // Sports Med. 2022. V. 52. № 10. P. 2355.
- Sales K.M., Reimer R.A. Unlocking a novel determinant of athletic performance: The role of the gut microbiota, shortchain fatty, and biotics in exercise // J. Sports Health Sci. 2023. V. 12. № 1. P. 36.
- Arcidiacono S., Soares J.W., Karl J.P. et al. The current state and future direction of DoD gut microbiome research: A summary of the first DoD gut microbiome informational meeting // Stand. Genomic Sci. 2018. V. 13. P. 5.
- Giron M., Thomas M., Dardevet D. et al. Gut microbes and muscle function: can probiotics make our muscles stronger? // J. Cachexia Sarcopenia Muscle. 2022. V. 13. № 3. P. 1460.
- Thaiss C.A. A microbiome exercise // Science. 2023. V. 381. № 6653. P. 38.
- Yin Y., Guo Q., Zhou X. et al. Role of brain-gut- muscle axis in human health and energy homeostasis // Front. Nutr. 2022. V. 9. P. 947033.
- Gomes S.D., Oliveira C.S., Azevedo-Silva J. et al. The role of diet related short -chain fatty acids in colorectal cancer metabolism and survival: Prevention and therapeutic implications // Curr. Med. Chem. 2020. V. 27. № 24. P. 4087.
- Psichas A., Sleeth M., Murphy K.G. et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents // Int. J. Obes. (London). 2015. V. 39. № 3. P. 424.
- Caspari G., Swann J. Small talk: Microbial metabolites involved in the signaling from microbiota to brain // Curr. Opin. Pharmacol. 2019. V. 48. P. 99.
- Vicentini F.A., Keenan C.M., Wallace L.E. et al. Intestinal microbiota shapes gut physiology and regulates enteric neurons and glia // Microbiome. 2021. V. 9. № 1. P. 210.
- Jena P.K., Sheng L., Lucente J. et al. Dysregulated bile acid synthesis and dysbiosis are implicated in Western diet-induced systemic inflammation, microglial activation, and reduced neuroplasticity // FASEB J. 2018. V. 32. № 5. P. 2866.
- Bosi A., Banfi D., Bistoletti M. et al. Tryptophan metabolites along the microbiota-gut-brain axis: an interkingdom communication system influencing the gut in health and disease // Int. J. Tryptophan Res. 2020. V. 13. P. 1178646920928984.
- Hinkley J.M., Yu G., Standley R.A. et al. Exercise and ageing impact the kynurenine/tryptophan pathway and metabolite pools in skeletal muscle of older adults // J. Physiol. 2023. V. 601. № 11. P. 2165.
- Shenkman B., Sharlo K. [How muscle activity controls slow myosin expression] // Ros. Fiziol. Zh. Im. I.M. Sechenova. 2021. V. 107. № 6–7. P. 669.
- Qi R., Sun J., Qiu X. et al. The intestinal microbiota contributes to the growth and physiological state of muscle tissue in piglets // Sci. Rep. 2021. V. 11. № 1. P. 11237.
- Lahiri S., Kim H., Garcia-Perez I. et al. The gut microbiota influences skeletal muscle mass and function in mice // Sci. Transl. Med. 2019. V. 11. № 502. P. eaan5662.
- Maruta H., Yoshimura Y., Araki A. et al. Activation of AMP-activated protein kinase and stimulation of energy metabolism by acetic acid in L6 myotube cells // PLoS One. 2016. V. 11. № 6. P. e0158055.
- Maruta H., Yamashita H. Acetic acid stimulates G-protein-coupled receptor GPR43 and induces intracellular calcium influx in L6 myotube cells // PLoS One. 2020. V. 15. № 9. P. e0239428.
- Scheiman J., Luber J.M., Chavkin T.A. et al. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism // Nat. Med. 2019. V. 25. № 7. P. 1104.
- Lee M.C., Hsu Y.J., Chuang H.L. et al. In vivo ergogenic properties of the bifidobacterium longum OLP-01 isolated from a weightlifting gold medalist // Nutrients. 2019. V. 11. № 9. P. 2003.
- Lee M.C., Hsu Y.J., Ho H.H. et al. Lactobacillus salivarius subspecies salicinius SA-03 is a new probiotic capable of enhancing exercise performance and decreasing fatigue // Microorganisms. 2020. V. 8. № 4. P. 545.
- Zhou Y., Chu Z., Luo Y. et al. Dietary polysaccharides exert anti-fatigue functions via the gut-muscle axis: advances and prospectives // Foods. 2023. V. 12. № 16. P. 3083.
- Cho Y.M., Fujita Y., Kieffer T.J. Glucagon-like peptide-1: Glucose homeostasis and beyond // Annu. Rev. Physiol. 2014. V. 76. P. 535.
- Müller T.D., Finan B., Bloom S.R. et al. Glucagon-like peptide 1 (GLP-1) // Mol. Metab. 2019. V. 30. P. 72.
- Huber H., Schieren A., Holst J.J., Simon M.-C. Dietary impact on fasting and stimulated GLP-1 secretion in different metabolic conditions – a narrative review // Am. J. Clin. Nutr. 2024. V. 119. № 3. P. 599.
- Han X., Wang Y., Zhang P. et al. Kazak fecal microbiota transplantation induces short-chain fatty acids that promote glucagon-like peptide-1 secretion by regulating gut microbiota in db/db mice // Pharm. Biol. 2021. V. 59. № 1. P. 1077.
- Chambers E.S., Viardot A., Psichas A. et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults // Gut. 2015. V. 64. № 11. P. 1744.
- Freeland K.R., Wolever T.M.S. Acute effects of intravenous and rectal acetate on glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumor necrosis factor-alpha // Br. J. Nutr. 2010. V. 103. № 3. P. 460.
- Lui J.C. Gut microbiota in regulation of childhood bone growth // Exp. Physiol. 2024. V. 109. № 5. P. 662.
- Suta S., Ophakas S., Manosan T. et al. Influence of prolonged whole egg supplementation on insulin-like growth factor 1 and short-chain fatty acids product: Implications for human health and gut microbiota // Nutrients. 2023. V. 5. № 22. P. 4804.
- Schwarzer M., Makki K., Storelli G. et al. Lactobacillus plantarum strain maintains growth of infant mice during chronic under nutrition // Science. 2016. V. 351. № 6275. P. 854.
- Yan J., Herzog J.W., Tsang K. et al. Gut microbiota induce IGF-1 and promote bone formation and growth // Proc. Natl. Acad. Sci. 2016. V. 113. № 47. P. E7554.
- Li L., Chen L., Yang Y. et al. Characteristics of gut microbiome and its metabolites, short-chain fatty acids, in children with idiopathic short stature // Front. Endocrinol. 2022. V. 13. P. 890200.
- Kraemer W.J., Ratamess N.A., Hymer W.C. et al. Growth hormone(s), testosterone, insulin-like growth factors, and cortisol: Roles and integration for cellular development and growth with exercise // Front. Endocrinol (Lausanne). 2020. V. 11. P. 33.
- Li G., Jin B., Fan Z. Mechanisms involved in gut microbiota regulation of skeletal nuscle // Oxid. Med. Cell. Longev. 2022. V. 2022. P. 2151191.
- Clauss M., Gérard P., Mosca A., Leclerc M. Interplay between exercise and gut microbiome in the context of human health and performance // Front. Nutr. 2021. V. 8. P. 637010.
- Zhou Y., Wu Q., Yu W. et al. Gastrodin ameliorates exercise-induced fatigue via modulating Nrf2 pathway and inhibiting inflammation in mice // Food Biosci. 2023. V. 51. P. 102262.
- Spragge F., Bakkeren E., Jahn M.T. et al. Microbiome diversity protects against pathogens by nutrient blocking // Science. 2023. V. 382. № 6676. P. eadj3502.
- Badal V.D., Vaccariello E.D., Murray E.R. et al. The gut microbiome, aging, and longevity: A systematic review // Nutrients. 2020. V. 12. № 12. P. 3759.
Қосымша файлдар
