Modulation of human adaptation processes to weightlessness conditions by artificial reproduction of weight load effects in space flight

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

At present, the mechanisms of human adaptation to the action of weightlessness, which humans, as a biological species, have encountered only recently, continue to be intensively studied. Understanding the mechanisms of human adaptation to weightlessness allows us to propose ways of modulating this process with preservation of useful adaptive reactions against the background of suppression of negative syndromes characteristic of space flight and inhibition of mechanisms preventing favorable functioning of physiological systems after returning to the conditions of gravity. One of the integral components of the system of countermeasure of the negative influence of weightlessness is artificial reproduction of the effects of gravity, i.e. imitation of the impact on the human body of the weight load characteristic of the Earth conditions. The article considers the role of artificial reproduction of the effects of the weight load corresponding in value to the weight of the human body before the space flight. The article tests the hypothesis about the possibility of modulation of adaptation processes to weightlessness conditions by providing the necessary sensory inflow to the receptors of gravity-dependent physiological systems and its influence on the processes of re-adaptation to Earth conditions. The “weight” loading used during the flight was analyzed, as well as the data of pre-flight, flight and post-flight tests on the performance of 10 cosmonauts who performed long space flights with an average duration of 173 ± 33 days. It is shown that regular reproduction of the effects of weight load corresponding to the human body mass on Earth allows to modulate the process of human adaptation to weightlessness.

全文:

受限制的访问

作者简介

E. Fomina

Institute of Biomedical Problems, RAS

编辑信件的主要联系方式.
Email: fomin-fomin@yandex.ru
俄罗斯联邦, Moscow

N. Senatorova

Institute of Biomedical Problems, RAS

Email: fomin-fomin@yandex.ru
俄罗斯联邦, Moscow

P. Romanov

Institute of Biomedical Problems, RAS

Email: fomin-fomin@yandex.ru
俄罗斯联邦, Moscow

D. Babich

Institute of Biomedical Problems, RAS

Email: fomin-fomin@yandex.ru
俄罗斯联邦, Moscow

参考

  1. Gunga H.C. Human physiology in extreme environments. Academic Press. London, 2020. 349 p.
  2. Ajdaraliev A.A., Maksimov A.L. [Human adaptation to extreme conditions: Forecasting experience]. Sankt-Peterburg: «Nauka», 1988. 126 p.
  3. Oppedizano M., Luidzhievich D., Artyuh L.Yu. [Human adaptation to extreme conditions of activity. Physiological mechanisms (structural trace of adaptation)] // Forcipe. 2021. V. 4. № 4. P. 18.
  4. Medvedev D.V., Suslina I. [Physiological factors conditioning human physical efficiency at different stages of adaptation for the muscle activity] // Fundament. Res. 2012. № 9–4. P. 820.
  5. Norsk P. Adaptation of the cardiovascular system to weightlessness: Surprises, paradoxes and implications for deep space missions // Acta Physiol. 2020. V. 228. № 3. P. e13434.
  6. Trudel G., Shahin N., Ramsay T. et al. Hemolysis contributes to anemia during long-duration space flight // Nat. Med. 2022. V. 28. № 1. P. 59.
  7. Scott J.M., Stoudemire J., Dolan L., Downs M. Leveraging spaceflight to advance cardiovascular research on earth // Circulat. Res. 2022. V. 130. № 6. P. 942.
  8. Grigor’ev A., Orlov O., Baranov V. Space medicine: Scientific foundations, achievements, and challenges // Her. Russ. Acad. Sci. 2021. V. 91. № 6. P. 626.
  9. Stavnichuk M., Mikolajewicz N., Corlett T. et al. A systematic review and meta-analysis of bone loss in space travelers // NPJ Microgravity. 2020. V. 6. № 1. P. 13.
  10. Tverdokhlib V.P., Tverdokhlib D.V., Mitinsky G.M. et al. [General adaptation mechanisms and prevention determine the health of a healthy person] // Hum. Sport. Med. 2006. № 3–1. P. 99.
  11. Naumov I.A., Kornilova L.N., Glukhikh D.O. et al. The effect of afferentation of various sensory systems on the otolith-ocular reflex in a real and simulated weightlessness // Human Physiology. 2021. V. 47. № 1. P. 70.
  12. Reschke M.F., Wood S.J., Clément G. Ocular counter rolling in astronauts after short-and long-duration spaceflight // Sci. Rep. 2018. V. 8. № 1. P. 7747.
  13. Glukhikh D.O., Naumov I.A., Schoenmaekers C. et al. The role of different afferent systems in the modulation of the otolith-ocular reflex after long-term space flights // Front. Physiol. 2022. V. 13. P. 743855.
  14. Noskov V.B. Adaptation of the water-electrolyte metabolism to space flight and at its imitation // Human Physiology. 2013. V. 39. P. 551.
  15. Olde Engberink R.H., van Oosten P.J., Weber T. et al. The kidney, volume homeostasis and osmoregulation in space: Current perspective and knowledge gaps // NPJ Microgravity. 2023. V. 9. № 1. P. 29.
  16. Fomina E.V., Senatorova N.A., Bakhtereva V.D. et al. The role of fast running in prevention of negative effects of prolonged exposure to weightlessness // Extreme Med. 2023. V. 25. № 4. P. 91.
  17. Fomina E.V., Lysova N.Yu., Rezvanova S.K. et al. [Predictors of cosmonaut's readiness to work on the martian surface on the evidence from orbital missions onboard the International space station] // Aviakosm. Ekol. Med. 2019. V. 53. № 7. P. 19.
  18. Neves L.N.S., Gasparini V.H., Alves S.P. et al. Cardiorespiratory fitness level influences the ventilatory threshold identification // J. Phys. Educ. 2021. V. 32. P. e3279.
  19. Beaver W.L., Wasserman K., Whipp B.J. A new method for detecting anaerobic threshold by gas exchange // J. Appl. Physiol. 1986. V. 60. № 6. P. 2020.
  20. Summers R.L., Martin D.S., Meck J.V., Coleman T.G. Mechanism of spaceflight-induced changes in left ventricular mass // Am. J. Cardiol. 2005. V. 95. № 9. P. 1128.
  21. Hughson R.L., Robertson A.D., Arbeille P. et al. Increased postflight carotid artery stiffness and inflight insulin resistance resulting from six-months spaceflight in male and female astronauts // Am. J. Physiol. Heart Circ. Physiol. 2016. V. 310. № 5. P. H628.
  22. Ghani F., Cheung I., Phillips A. et al. Lung volume, capacity and shape in microgravity: A systematic review and meta-analysis // Acta Astronaut. 2023. V. 212. P. 424.
  23. Prisk G.K. Pulmonary challenges of prolonged journeys to space: Taking your lungs to the moon // Med. J. Aust. 2019. V. 211. № 6. P. 271.
  24. Baranov V.M., Katuntsev V.P., Tarasenkov G.G. et al. [Studies of the activity of the central respiratory mechanism in long-term space missions] // Aviakosm. Ekol. Med. 2022. V. 56. № 3. P. 5.
  25. Kunz H., Quiriarte H., Simpson R.J. et al. Alterations in hematologic indices during long-duration spaceflight // BMC Hematol. 2017. V. 17. P. 12.
  26. Serova A.V., Zhuravleva O.A., Rykova M.P. et al. [Morphofunctional status of cosmonauts' erythrocytes after missions to the International space station of varying duration] // Aviakosm. Ekol. Med. 2024. V. 58. № 4. P. 25.
  27. Scott J.M., Feiveson A.H., English K.L. et al. Effects of exercise countermeasures on multisystem function in long duration spaceflight astronauts // NPJ Microgravity. 2023. V. 9. № 1. P. 11.
  28. Moore A.D., Lynn P.A., Feiveson A.H. The first 10 years of aerobic exercise responses to long-duration ISS flights // Aerosp. Med. Hum. Perform. 2015. V. 86. № 12. P. A78.
  29. Moore Jr. A.D., Downs M.E., Lee S.M. et al. Peak exercise oxygen uptake during and following long-duration spaceflight // J. Appl. Physiol. 2014. V. 117. № 3. P. 231.
  30. Hackney K.J., Scott J.M., Hanson A.M. et al. The astronaut-athlete: Optimizing human performance in space // J. Strength Cond. Res. 2015. V. 29. № 12. P. 3531.
  31. English K.L., Downs M., Goetchius E. et al. High intensity training during spaceflight: Results from the NASA Sprint Study // NPJ Microgravity. 2020. V. 6. № 1. P. 21.
  32. Greene K.A., Withers S.S., Lenchik L. et al. Trunk skeletal muscle changes on CT with long-duration spaceflight // Ann. Biomed. Eng. 2021. V. 49. P. 1257.
  33. Blottner D., Moriggi M., Trautmann G. et al. Space omics and tissue response in astronaut skeletal muscle after short and long duration missions // Int. J. Mol. Sci. 2023. V. 24. № 4. P. 4095.
  34. Burkhart K., Allaire B., Bouxsein M.L. Negative effects of long-duration spaceflight on paraspinal muscle morphology // Spine. 2019. V. 44. № 12. P. 879.
  35. McNamara K.P., Greene K.A., Moore A.M. et al. Lumbopelvic muscle changes following long-duration spaceflight // Front. Physiol. 2019. V. 10. P. 627.
  36. Islamov R., Mishagina E., Tyapkina O. et al. Mechanisms of spinal motoneurons survival in rats under simulated hypogravity on earth // Acta Astronaut. 2011. V. 68. № 9–10. P. 1469.
  37. Porseva V., Shilkin V., Strelkov A. et al. Changes in the neurochemical composition of motor neurons of the spinal cord in mice under conditions of space flight // Bull. Exp. Biol. Med. 2017. V. 162. P. 336.
  38. Chelyshev Y.A., Muhamedshina Y., Povysheva T. et al. Characterization of spinal cord glial cells in a model of hindlimb unloading in mice // Neuroscience. 2014. V. 280. P. 328.
  39. Tyapkina O., Volkov E., Nurullin L. et al. Resting membrane potential and Na+, K+-ATPase of rat fast and slow muscles during modeling of hypogravity // Physiol. Res. 2009. V. 58. № 4. P. 599.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Design of the experiment in six-month space flights. TIS – “Individual Strategies” test.

下载 (188KB)
3. Fig. 2. Reproduction of the effects of "weight" loading during six-month flights. a - resistance to bidirectional compression along the vertical axis of the body by flexion-extension of the legs at the ankle joints, b - resistance to bidirectional compression along the vertical axis of the body by flexion-extension at the knee joints, c - average "weight" load, d - walking and running on a track with loading along the vertical axis of the body using a special loading suit.

下载 (124KB)
4. Fig. 3. Pulmonary ventilation (l/min) in the Individual Strategies test before and on the 10th ± 1st day after space flight (SF). * – compared to the pre-flight level, p value < 0.05.

下载 (78KB)
5. Fig. 4. Pulse sum of work (A) and recovery (B) in the “Individual Strategies” test. * – compared to the pre-flight level, the p value is < 0.05.

下载 (100KB)
6. Fig. 5. Peak pulmonary ventilation in the Individual Strategies test.

下载 (66KB)
7. Fig. 6. Changes in the maximum voluntary strength of the leg muscles after six months of flights.

下载 (305KB)

版权所有 © Russian Academy of Sciences, 2025