Iron metabolism in human body on Earth and in space
- Авторлар: Serova A.V.1, Zhuravleva O.A.1, Markin A.A.1
-
Мекемелер:
- Institute of Biomedical Problems, RAS
- Шығарылым: Том 51, № 3 (2025)
- Беттер: 110-124
- Бөлім: ОБЗОРЫ
- URL: https://www.journal-ta.ru/0131-1646/article/view/684032
- DOI: https://doi.org/10.31857/S0131164625030113
- EDN: https://elibrary.ru/TPWNQG
- ID: 684032
Дәйексөз келтіру
Аннотация
The review summarizes modern concepts about iron metabolism in the human body under terrestrial conditions and during space flights. The processes of absorption, transport, deposition and excretion of iron from the body, the effect of regulatory proteins, transporter proteins and receptor proteins on the metabolism of this trace element are considered. Special attention is paid to iron metabolism among participants in ground-based model experiments simulating the effects of space flight factors, as well as among crew members of expeditions to the Mir space station and the International Space Station. The paper presents and analyzes, from a modern point of view, experimental data on the peculiarities of iron metabolism in humans under extreme conditions of vital activity.
Негізгі сөздер
Толық мәтін

Авторлар туралы
A. Serova
Institute of Biomedical Problems, RAS
Хат алмасуға жауапты Автор.
Email: aniuta.serova2010@yandex.ru
Ресей, Moscow
O. Zhuravleva
Institute of Biomedical Problems, RAS
Email: aniuta.serova2010@yandex.ru
Ресей, Moscow
A. Markin
Institute of Biomedical Problems, RAS
Email: aniuta.serova2010@yandex.ru
Ресей, Moscow
Әдебиет тізімі
- Patel M., Ramavataram D.V.S.S. Non transferrin bound iron: Nature, manifestations and analytical approaches for estimation // Indian J. Clin. Biochem. 2012. V. 27. № 4. P. 322.
- Polyakova O.A., Klepikova M.V., Litvinova S.N. et al. [Iron deficiency and iron deficiency anemia in general medical practice] // Profilakticheskaya Meditsina. 2022. V. 25. № 12. P. 127.
- Kochneva E.V., Kralevska M.V. [Iron-deficiency conditions and their express diagnostics in everyday clinical practice] // Voprosy Dietologii. 2017. V. 7. № 2. P. 58.
- Heath A.L., Fairweather-Tait S.J. Clinical implications of changes in the modern diet: iron intake, absorbtion and status // Best Pract. Res. Clin. Haematol. 2002. V. 15. № 2. P. 225.
- Dixon S.J., Lemberg K.M., Lamprecht M.R. et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death // Cell. 2012. V. 149. № 5. P. 1060.
- Grange C., Lux F., Brichart T. et al. Iron as an emerging therapeutic target in critically ill patients // Crit. Care. 2023. V. 27. P. 475.
- Yiannikourides A., Latunde-Dada G.O. A short review of iron metabolism and pathophysiology of iron disorders // Medicines. 2019. V. 6. № 3. P. 85.
- Vogt A.-C.S., Arsiwala T., Mohsen M. et al. On Iron Metabolism and Its Regulation // Int. J. Mol. Sci. 2021. V. 22. P. 4591.
- Zakharova I.N., Machneva E.B. [Correction of iron deficiency: Background and current aspects] // Vopr. Praktich. Pediatr. 2014. V. 9. № 4. P. 2.
- Mikhelson Ar.A., Lebedenko E.Yu., Gayda O.V. et al. Iron deficiencies in obstetric-gynecologic practice // Russian Journal of Woman and Child Health. 2022. V. 5. № 2. P. 129.
- Lukina E.A., Dezhenkova A.V. [Iron Metabolism in Normal and Pathological Conditions] // Clin. Oncohematol. 2015. V. 8. № 4. P. 355.
- Borodulina E.A., Yakovleva E.V. Iron metabolism and indicators reflecting its changes in pulmonary tuberculosis (literature review) // Klin. Lab. Diagn. 2020. V. 65. № 3. P. 149.
- Candelaria P.V., Leoh L.S., Penichet M.L., Daniels-Wells T.R. Antibodies targeting the Transferrin Receptor 1 (TfR1) as direct anti-cancer agents // Front. Immunol. 2021. V. 12. P. e607692.
- Liu Q., Barker S., Knutson M.D. Iron and manganese transport in mammalian systems // Biochim. Biophys. Acta. Mol. Cell Res. 2021. V. 1868. № 1. P. 118890.
- Dutt S., Hamza I., Bartnikas T.B. Molecular mechanisms of iron and heme metabolism // Annu. Rev. Nutr. 2022. V. 42. P. 311.
- Orlov Yu.P., Govorova N.V., Lukach V.N. et al. Iron metabolismin conditions of infection. Review // Ann. Crit. Care. 2020. № 1. P. 90.
- Camaschella C., Nai A., Silvestri L. Iron metabolism and iron disorders revisited in the hepsidin era // Haematologica. 2020. V. 105. № 2. P. 260.
- Alekberova S.A., Gafarov I.A. [Hepcidin and its association with interleukin 6 in the development of iron deficiency of patients with mechanical jaundice due to choledocholithiasis] // The Bulletin of Contemporary Clinical Medicine. 2020. V. 13. Issue 2. P. 7.
- Kurchenkova V.I., Kapralov N.V., Shalamitskaya-Hulevich I.A. [Multi-directed iron exchange disorders] // Meditsinskii Zhurnal. 2020. № 3. P. 12.
- Shikh E.V., Drozdov V.N., Shulyatyeva N.V., Osipyan E.E. [Latent iron deficiency: pathogenetic variants and treatment efficacy in patients infected by H. Pylori] // Poliklinika. 2021. № 2. P. 10.
- Egorova N.A., Kanatnikova N.V. [Iron metabolism in the human body and its hygienic limits for drinking water. Review. Part 1] // Gigiena i Sanitaria. 2020. V. 99. № 4. P. 412.
- Gushchin V.I., Vinokhodova A.G., Komissarova D.V. et al. [Experiments with isolation: the past, present and future] // Aviakosm. Ekol. Med. 2018. V. 52. № 4. P. 5.
- Pave-Le Traon A., Heer M., Narici M.V. et al. From Space to Earth: Advances in human physiology from 20 years of bed rest studies (1986–2006) // Eur. J. Appl. Physiol. 2007. V. 101. № 2. P. 143.
- Ivanova S.M. [Hematological studies / Annual antiorthostatic hypokinesia (AOH) – a physiological model of interplanetary space flight]. Eds. Grigoriev A.I., Kozlovskaya I.B. M.: Russian Academy of Sciences, 2018. P. 210.
- Zwart S.R., Oliver S.A.M., Fesperman J.V. et al. Nutritional status assessment before, during, and after long-duration head-down bed rest // Aviat. Space Environ. Med. 2009. V. 80. № 5. Suppl. 1. P. A1.
- Culliton K., Louati H., Laneuville O. et al. Six degrees head-down tilt bed rest caused low-grade hemolysis: a prospective randomized clinical trial // NPJ Microgravity. 2021. V. 7. № 1. P. 4.
- Gunga H.-C., Kirsch K., Baartz F. et al. Erythropoietin under real and simulated microgravity conditions in humans // Eur. J. Appl. Physiol. 1996. V. 81. № 2. P. 761.
- Branch J.D. 3rd, Pate R.R., Bodary P.F., Convertino V.A. Red Cell Volume and [Erythropoeitin] Responses During Exposure to Simulated Microgravity // Aviat. Space Environ. Med. 1998. V. 69. № 4. P. 347.
- Dunn C.D.R., Lange R.D., Kimzey S.L. et al. Serum Erythropoietin titers diring bedrest; relevance to the “anaemia” of space flight // Eur. J. Appl. Ocupp. Physiol. 1984. V. 52. № 2. P. 178.
- Horeau M., Ropert M., Mulder E. et al. Iron metabolism regulation in females and males exposed to simulated microgravity: Results from the randomized trial Artificial Gravity Bed Rest — European Space Agency (AGBRESA) // Am. J. Clin. Nutr. 2022. V. 116. № 5. P. 1430.
- Navasiolava N.M., Custaud M.-A., Tomilovskaya E.S. et al. Long-term dry immersion: review and prospect // Eur. J. Appl. Physiol. 2010. V. 111. № 7. P. 1235.
- Markin A.A., Zhuravleva O.A., Morukov B.V. et al. [Metabolic effects of physical countermeasures against deficient weight-bearing in an experiment with a 7-day immersion] // Aviakosm. Ekol. Med. 2011. V. 45. № 4. P. 28.
- Nay K., Koechlin-Ramonatxo C., Rochdi S. et al. Simulated microgravity disturbs iron metabolism and distribution in humans: Lessons from dry immersion, an innovative ground-based human model // FASEB J. 2020. V. 34. № 11. P. 14920.
- Horeau M., Navasiolava N., Van Ombergen A. et al. Dry immersion rapidly disturbs iron metabolism in men and women: results from the VIVALDI studies // NPJ Microgravity. 2024. V. 10. № 1. P. 68.
- Markin A.A., Zhuravleva O.A., Morukov B.V. et al. [Homeostatic reactions of human organism during exposure to 105-day isolation] // Aviakosm. Ekol. Med. 2010. V. 44. № 4. P. 31.
- Markin A.A., Zhuravleva O.A., Kuzichkin D.S., Smirnova T.A. [The study of metabolic reactions in the volunteers in experiment with short-term isolation in the hermetic chamber] // Tekhnologii Zhivykh Sistem. 2019. V. 16. № 2. P. 44.
- Grigoriev A.I., Egorov A.D. [Long-term space flights / Space biology and medicine. Joint Russian-American edition in 5 volumes. V. III, book 2. Man in space flight] / Eds. Antipov V.V., Grigoriev A.I., Leach Huntoon K. M.: Nauka, 1997. Ch. 7. P. 368.
- Smith S.M. Red blood cell and iron metabolism during space flight // Nitrition. 2002. V. 18. № 10. P. 864.
- Ivanova S.M., Yarlykova Yu.V., Labetskaya O.I. et al. [The effect of spaceflight factors on human peripheral red blood] // Aviakosm. Ekol. Med. 1998. V. 32. № 1. P. 35.
- Markin A.A., Zhuravleva O.A., Morukov B.V. et al. [Characteristics of cosmonauts’ metabolism after extended missions on the international space station] // Aviakosm. Ekol. Med. 2005. V. 39. № 4. P. 36.
- Ivanova S.M., Morukov B.V., Labetskaya O.I. et al. [Morphobio-chemical assay of the red blood system in members of the prime crews of the international space station] // Aviakosm. Ekol. Med. 2006. V. 40. № 3. P. 9.
- Ivanova S.M., Morukov B.V., Labetskaya O.I. et al. [Red blood of cosmonauts on missions aboard the international space station (ISS)] // Aviakosm. Ekol. Med. 2007. V. 41. № 6. P. 28.
- Smith S.M., Zwart S.R., Block G. et al. The nutritional status of astronauts is altered after long-term space flight aboard the International Space Station // Nutrition. 2005. V. 135. № 3. P. 437.
- Zwart S.R., Morgan J.L.L., Smith S.M. Iron status and its relations with oxidative damage and bone loss during long-duration space flight on the International Space Station // Am. J. Clin. Nutr. 2013. V. 98. № 1. P. 217.
- Trudel G., Shahin N., Ramsey T. et al. Hemolysis contributes to anemia during long-duration space flight // Nat. Med. 2022. V. 28. № 1. P. 59.
- Lansiaux E., Jain N., Chodnekar S.Y. et al. Understanding the complexities of space anaemia in extended space missions: Revelations from microgravitational odyssey // Front. Physiol. 2024. V. 15. P. 1321468.
Қосымша файлдар
