Comparative analysis of methods for predicting the toxicity of chemicals (literature review)
- Authors: Guseva E.A.1, Nikolaeva N.I.1, Savranets E.V.2, Zhantlisova D.M.3, Onishchenko G.G.1
-
Affiliations:
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, 199911, Russian Federation
- Domodedovo Hospital
- Federal Scientific Research Center for Hygiene named after F.F. Erisman
- Issue: Vol 104, No 5 (2025)
- Pages: 670-673
- Section: PREVENTIVE TOXICOLOGY AND HYGIENIC STANDARTIZATION
- Published: 15.12.2025
- URL: https://www.journal-ta.ru/0016-9900/article/view/689411
- DOI: https://doi.org/10.47470/0016-9900-2025-104-5-670-673
- EDN: https://elibrary.ru/dsqctn
- ID: 689411
Cite item
Abstract
The number of registered chemicals has doubled over the past seven years to 200 million compounds. Currently, the development of alternative research methods is becoming increasingly important. The methods of cross-reading and machine learning are of the greatest interest to researchers.The purpose of the study is to conduct a comparative analysis of read-across and machine learning methods used in predicting the toxicity of chemicals.A search was conducted for regulatory legal acts on two information and legal portals – ConsultantPlus and Garant.ru. The search for scientific literature was conducted using the PubMed database, the Cyberleninka scientific electronic library and the eLIBRARY electronic library using keywords such as "read-across", "toxicity prediction", "machine learning", and their analogues in Russian. The reports in Russian and English for the last 25 years have been selected, taking into account the inclusion and exclusion criteria. The conducted review showed the multidirectional application of read-across and machine learning in predicting the toxicity of chemicals. Despite the fact that there is a number of limitations to the use of these methods, a number of studies have demonstrated sufficient reliability and accuracy of their use. The combined use of read-across and machine learning will allow more effective predicting of chemical toxicity.Conclusion. The conducted review showed the multidirectional application of read-across and machine learning in predicting the toxicity of chemicals. Despite the fact that there is a number of limitations to the use of these methods, a number of studies have demonstrated sufficient reliability and accuracy of their use. The combined use of read-across and machine learning will allow more effective predicting the chemical toxicity.Contribution: Guseva E.A. – research concept and design, material collection and data processing, text writing; Nikolayeva N.I. – editing; Savranets E.V., Zhantlisova D.M. – material collection and data processing; Onishchenko G.G. – editing. All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version.Conflict of interest. The authors declare no conflict of interest.Funding. The study had no sponsorship.Received: January 15, 2025 / Accepted: March 26, 2025 / Published: June 27, 2025
Keywords
About the authors
Ekaterina A. Guseva
Sechenov First Moscow State Medical University (Sechenov University), Moscow, 199911, Russian Federation
Author for correspondence.
Email: guseva_e_a@staff.sechenov.ru
Natalia I. Nikolaeva
Sechenov First Moscow State Medical University (Sechenov University), Moscow, 199911, Russian Federation
Email: nativ.nikolayeva@gmail.com
Elizaveta V. Savranets
Domodedovo Hospital
Email: guseva_e_a@staff.sechenov.ru
Daria M. Zhantlisova
Federal Scientific Research Center for Hygiene named after F.F. Erisman
Email: guseva_e_a@staff.sechenov.ru
Gennadij G. Onishchenko
Sechenov First Moscow State Medical University (Sechenov University), Moscow, 199911, Russian Federation
Email: ecology.n@1msmu.ru
References
- CAS REGISTRY. Available at: https://cas.org/cas-data/cas-registry
- Зулькарнаев Т.Р., Соломинова Т.С., Тюрина Л.А., Новиков С.М. Прогнозирование класса опасности органических соединений по их структуре. Гигиена и санитария. 1999; 78(1): 56–9. https://elibrary.ru/yqscbx
- Кирлан С.А., Сементеева Л.Ш., Тюрина Л.А. Молекулярный дизайн и прогноз химических соединений по комплексу свойств активность-токсичность. Гигиена и санитария. 2008; 87(3): 77–80. https://elibrary.ru/jsaomb
- Правдин Н.С. Методика малой токсикологии промышленных ядов. М.: Медгиз; 1947.
- Харчевникова Н.В. Система прогноза токсичности и опасности химических веществ, основанная на совместном использовании логических и численных методов. Гигиена и санитария. 2005; 84(6): 21. https://elibrary.ru/ojnrlz
- Зарицкая Е.В., Полозова Е.В., Богачева А.С. Современные альтернативные токсикологические методы исследования и перспективы их использования в практической деятельности. Гигиена и санитария. 2017; 96(7): 671–4. https://elibrary.ru/zfbyyf
- Benfenati E., Chaudhry Q., Gini G., Dorne J.L. Integrating in silico models and read-across methods for predicting toxicity of chemicals: A step-wise strategy. Environ. Int. 2019; 131: 105060. https://doi.org/10.1016/j.envint.2019.105060
- Новиков С.М. Гигиеническое нормирование совместно действующих факторов. Гигиена и санитария. 2020; 99(2): 222–3. https://elibrary.ru/zdjwks
- Australian Industrial Chemicals Introduction Scheme. Working out your hazards using read-across information. Available at: https://industrialchemicals.gov.au/help-and-guides/working-out-your-hazards-using-read-across-information
- Patlewicz G., Ball N., Booth E.D., Hulzebos E., Zvinavashe E., Hennes C. Use of category approaches, read-across and (Q)SAR: general considerations. Regul. Toxicol. Pharmacol. 2013; 67(1): 1–12. https://doi.org/10.1016/j.yrtph.2013.06.002
- van Leeuwen K., Schultz T.W., Henry T., Diderich B., Veith G.D. Using chemical categories to fill data gaps in hazard assessment. SAR QSAR Environ. Res. 2009; 20(3–4): 207–20. https://doi.org/10.1080/10629360902949179
- Kovarich S., Ceriani L., Fuart Gatnik M., Bassan A., Pavan M. Filling data gaps by read-across: a mini review on its application, developments and challenges. Mol. Inform. 2019; 38(8–9): e1800121. https://doi.org/10.1002/minf.201800121
- Varsou D.D., Afantitis A., Melagraki G., Sarimveis H. Read-across predictions of nanoparticle hazard endpoints: a mathematical optimization approach. Nanoscale Adv. 2019; 1(9): 3485–98. https://doi.org/10.1039/c9na00242a
- Ball N., Bartels M., Budinsky R., Klapacz J., Hays S., Kirman C., et al. The challenge of using read-across within the EU REACH regulatory framework; how much uncertainty is too much? Dipropylene glycol methyl ether acetate, an exemplary case study. Regul. Toxicol. Pharmacol. 2014; 68(2): 212–21. https://doi.org/10.1016/j.yrtph.2013.12.007
- Helman G., Shah I., Williams A.J., Edwards J., Dunne J., Patlewicz G. Generalized Read-Across (GenRA): A workflow implemented into the EPA CompTox Chemicals Dashboard. ALTEX. 2019; 36(3): 462–5. https://doi.org/10.14573/altex.1811292
- Rorije E., Aldenberg T., Peijnenburg W. Read-across estimates of aquatic toxicity for selected fragrances. Altern. Lab. Anim. 2013; 41(1): 77–90. https://doi.org/10.1177/026119291304100109
- Berggren E., Amcoff P., Benigni R., Blackburn K., Carney E., Cronin M., et al. Chemical safety assessment using read-across: assessing the use of novel testing methods to strengthen the evidence base for decision making. Environ. Health Perspect. 2015; 123(12): 1232–40. https://doi.org/10.1289/ehp.1409342
- Schultz T.W., Amcoff P., Berggren E., Gautier F., Klaric M., Knight D.J., et al. A strategy for structuring and reporting a read-across prediction of toxicity. Regul. Toxicol. Pharmacol. 2015; 72(3): 586–601. https://doi.org/10.1016/j.yrtph.2015.05.016
- Schultz T.W., Cronin M.T.D. Lessons learned from read-across case studies for repeated-dose toxicity. Regul. Toxicol. Pharmacol. 2017; 88: 185–91. https://doi.org/10.1016/j.yrtph.2017.06.011
- Поройков В.В., Дмитриев А.В., Дружиловский Д.С., Иванов С.М., Лагунин А.А., Погодин П.В. и др. Оценка безопасности фармакологически активных веществ in silico c применением методов машинного обучения: обзор. Безопасность и риск фармакотерапии. 2023; 11(4): 372–89. https://doi.org/10.30895/2312-7821-2023-11-4-372-389 https://elibrary.ru/fovdiu
- Low Y., Sedykh A., Fourches D., Golbraikh A., Whelan M., Rusyn I., et al. Integrative chemical-biological read-across approach for chemical hazard classification. Chem. Res. Toxicol. 2013; 26(8): 1199–208. https://doi.org/10.1021/tx400110f
- Erturan A.M., Karaduman G., Durmaz H. Machine learning-based approach for efficient prediction of toxicity of chemical gases using feature selection. J. Hazard. Mater. 2023; 455: 131616. https://doi.org/10.1016/j.jhazmat.2023.131616
- Hu X.M., Hou Y.Y., Teng X.R., Liu Y., Li Y., Li W., et al. Prediction of cytochrome P450-mediated bioactivation using machine learning models and in vitro validation. Arch. Toxicol. 2024; 98(5): 1457–67. https://doi.org/10.1007/s00204-024-03701-w
- Lin Z., Chou W.C. Machine learning and artificial intelligence in toxicological sciences. Toxicol. Sci. 2022; 189(1): 7–19. https://doi.org/10.1093/toxsci/kfac075
- Golbamaki A., Benfenati E., Roncaglioni A. In silico methods for carcinogenicity assessment. Methods Mol. Biol. 2022; 2425: 201–15. https://doi.org/10.1007/978-1-0716-1960-5_9
- Venkatapathy R., Wang C.Y., Bruce R.M., Moudgal C. Development of quantitative structure-activity relationship (QSAR) models to predict the carcinogenic potency of chemicals I. Alternative toxicity measures as an estimator of carcinogenic potency. Toxicol. Appl. Pharmacol. 2009; 234(2): 209–21. https://doi.org/10.1016/j.taap.2008.09.028
- Viganò E.L., Ballabio D., Roncaglioni A. Artificial intelligence and machine learning methods to evaluate cardiotoxicity following the adverse outcome pathway frameworks. Toxics. 2024; 12(1): 87. https://doi.org/10.3390/toxics12010087
- Cheng K., Pan Y., Yuan B. Cytotoxicity prediction of nano metal oxides on different lung cells via Nano-QSAR. Environ. Pollut. 2024; 344: 123405. https://doi.org/10.1016/j.envpol.2024.123405
- Russo D.P., Strickland J., Karmaus A.L., Wang W., Shende S., Hartung T., et al. Nonanimal models for acute toxicity evaluations: applying data-driven profiling and read-across. Environ. Health Perspect. 2019; 127(4): 47001. https://doi.org/10.1289/EHP3614
- Kutsarova S., Mehmed A., Cherkezova D., Stoeva S., Georgiev M., Petkov T., et al. Automated read-across workflow for predicting acute oral toxicity: I. The decision scheme in the QSAR toolbox. Regul. Toxicol. Pharmacol. 2021; 125: 105015. https://doi.org/10.1016/j.yrtph.2021.105015
- Cases M., Briggs K., Steger-Hartmann T., Pognan F., Marc P., Kleinöder T., et al. The eTOX data-sharing project to advance in silico drug-induced toxicity prediction. Int. J. Mol. Sci. 2014; 15(11): 21136–54. https://doi.org/10.3390/ijms151121136
- Cavasotto C.N., Scardino V. Machine learning toxicity prediction: latest advances by toxicity end point. ACS Omega. 2022; 7(51): 47536–46. https://doi.org/10.1021/acsomega.2c05693
- Hisaki T., Kaneko M.A.N., Hirota M., Matsuoka M., Kouzuki H. Integration of read-across and artificial neural network-based QSAR models for predicting systemic toxicity: A case study for valproic acid. J. Toxicol. Sci. 2020; 45(2): 95–108. https://doi.org/10.2131/jts.45.95
Supplementary files
