Experimental evaluation of combined effect of chemical substances on the base of quantification of blood plasma proteins

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Introduction. Modern methods for assessing the combined effects of chemicals include mathematical processing of data that does not take into account changes at the molecular level.The purpose of the study is to evaluate the combined effect of chemicals based on the quantification of blood plasma proteins in a biological model (using the example of aluminum oxide, hydrogen fluoride, and benzo(a)pyrene)Materials and methods. Using chemical-analytical, statistical, proteomic, and bioinformatic analysis methods, an assessment of the combined effect of chemical substances was carried out in an experiment on Wistar rats.Results. The combined action of aluminum oxide, hydrogen fluoride, and benz(a)pyrene causes disturbances at the molecular level, including activation of oxidative stress, changes in the regulation of intracellular processes, suppression of the activity of the cycle and cell functions. The combined action of the substances studied according to the criterion of changes in protein expression is assessed as synergistic. This indicates to an increase in the effect of the combined action of aluminum oxide, hydrogen fluoride, and benz(a)pyrene relative to their isolated exposure.Limitations. The conducted study does not allow drawing final conclusions about the specifics of the combined action of the studied chemicals, since the method used has limitations in the number of identified proteins.Conclusion. The established molecular effects of the combined action of the studied chemical substances (mainly of a synergistic nature) expand theoretical understanding of the mechanisms of their toxicity, approaches to early detection, and justification of measures to prevent risk-induced human health disorders.Compliance with ethical standards. Experimental studies on a biological model were carried out in compliance with the requirements of the European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes (ETS No. 123). The studies were approved by the Biomedical Ethics Committee of the Federal Scientific Center for Medical and Preventive Health Risk Management Technologies (minutes of meeting No. 1 of 04.02.2021).Conflict of interest. The authors declare no conflict of interest.Funding. The study had no sponsorship.Received: February 20, 2025 / Revised:  March 13, 2025 / Accepted: March 26, 2025 / Published: June 27, 2025

作者简介

Ekaterina Peskova

Federal Scientific Center for Medical and Preventive Health Risk Management Technologies

Email: peskova@fcrisk.ru

参考

  1. Cote I., Andersen M.E., Ankley G.T., Barone S., Birnbaum L.S., Boekelheide K., et al. The next generation of risk assessment multi-year study-highlights of findings, applications to risk assessment, and future directions. Environ. Health Perspect. 2016; 124(11): 1671–82. https://doi.org/10.1289/EHP233 2016
  2. Sturla S.J., Boobis A.R., FitzGerald R.E., Hoeng J., Kavlock R.J., Schirmer K., et al. Systems toxicology: from basic research to risk assessment. Chem. Res. Toxicol. 2014; 27(3): 314–29. https://doi.org/10.1021/tx400410s
  3. Anderson N.L., Anderson N.G. The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell Proteomics. 2002; 1(11): 845–67. https://doi.org/10.1074/mcp.r200007-mcp200
  4. Corzett T.H., Fodor I.K., Choi M.W., Walsworth V.L., Turteltaub K.W., McCutchen-Maloney S.L., et al. Statistical analysis of variation in the human plasma proteome. J. Biomed. Biotechnol. 2010; 2010: 258494. https://doi.org/10.1155/2010/258494
  5. Зайцева Н.В., Землянова М.А., Долгих О.В. Геномные, транскриптомные и протеомные технологии как современный инструмент диагностики нарушений здоровья, ассоциированных с воздействием факторов окружающей среды. Гигиена и санитария. 2020; 99(1): 6–12. https://elibrary.ru/pipsea
  6. Соседова Л.М., Филиппова Т.М. Роль биомоделирования в системе химической безопасности человека. Экология человека. 2017; (7): 46–52. https://doi.org/10.33396/1728-0869-2017-7-46-52 https://elibrary.ru/yunopd
  7. Землянова М.А., Пескова Е.В., Степанков М.С. Протеомное профилирование плазмы крови при хронической экспериментальной экспозиции оксидом алюминия как инструмент прогноза негативных эффектов со стороны критических органов и систем человека. Гигиена и санитария. 2023; 102(10): 1125–31. https://doi.org/10.47470/0016-9900-2023-102-10-1125-1131 https://elibrary.ru/oyysbv
  8. Шекунова Е.В., Ковалева М.А., Макарова М.Н., Макаров В.Г. Выбор дозы препарата для доклинического исследования: межвидовой перенос доз. Ведомости Научного центра экспертизы средств медицинского применения. 2020; 10(1): 19–28. https://doi.org/10.30895/1991-2919-2020-10-1-19-28 https://elibrary.ru/kvzbbv
  9. Зайцева Н.В., Землянова М.А., Кольдибекова Ю.В., Кирьянов Д.А., Чигвинцев В.М. Оценка особенности комбинированного действия ряда химических веществ на основе анализа параметризованных причинно-следственных связей маркёров экспозиции и негативных эффектов и количественной оценки дополнительного риска для здоровья. Гигиена и санитария. 2023; 102(10): 1132–42. https://doi.org/10.47470/0016-9900-2023-102-10-1132-1142 https://elibrary.ru/qhvjbh
  10. Зайцева Н.В., Землянова М.А., Пескова Е.В. Прогноз вероятных негативных эффектов, инициированных трансформацией протеомного профиля плазмы крови человека при комбинированном воздействии химических веществ. Гигиена и санитария. 2024; 103(5): 407–15. https://doi.org/10.47470/0016-9900-2024-103-5-407-415 https://elibrary.ru/acuahh
  11. Luigi C. EEF1G (Eukaryotic translation elongation factor 1 gamma). Atlas Genet. Cytogenet. Oncol. Haematol. 2020; 24(2): 58–68. https://doi.org/10.4267/2042/70656
  12. Chen L., Johnson R.C., Milgram S.L. P-CIP1, a novel protein that interacts with the cytosolic domain of peptidylglycine alpha-amidating monooxygenase, is associated with endosomes. J. Biol. Chem. 1998; 273(50): 33524–32. https://doi.org/10.1074/jbc.273.50.33524
  13. Cooke A.L., Morris J., Melchior J.T., Street S.E., Jerome W.G., Huang R., et al. A thumbwheel mechanism for APOA1 activation of LCAT activity in HDL. J. Lipid. Res. 2018; 59(7): 1244–55. https://doi.org/10.1194/jlr.M085332
  14. Guo Q., Zhang C., Wang Y. Overexpression of apolipoprotein A-I alleviates endoplasmic reticulum stress in hepatocytes. Lipids Health Dis. 2017; 16(1): 105. https://doi.org/10.1186/s12944-017-0497-3
  15. Li X., Masliah E., Reixach N., Buxbaum J.N. Neuronal production of transthyretin in human and murine Alzheimer’s disease: is it protective? J. Neurosci. 2011; 31(35): 12483–90. https://doi.org/10.1523/JNEUROSCI.2417-11.2011
  16. Dehaene H., Praz V., Lhôte P., Lopes M., Herr W. THAP11F80L cobalamin disorder-associated mutation reveals normal and pathogenic THAP11 functions in gene expression and cell proliferation. PLoS One. 2020; 15(1): e0224646. https://doi.org/10.1371/journal.pone.0224646
  17. Shahidi M. Thrombosis and von Willebrand Factor. Adv. Exp. Med. Biol. 2017; 906: 285–306. https://doi.org/10.1007/5584_2016_122
  18. Sun W., Tian B.X., Wang S.H., Liu P.J., Wang Y.C. The function of SEC22B and its role in human diseases. Cytoskeleton (Hoboken). 2020; 77(8): 303–12. https://doi.org/10.1002/cm.21628
  19. Antinucci P., Suleyman O., Monfries C., Hindges R. Neural mechanisms generating orientation selectivity in the retina. Curr. Biol. 2016; 26(14): 1802–15. https://doi.org/10.1016/j.cub.2016.05.035
  20. Pal P., Jha N.K., Pal D., Jha S.K., Anand U., Gopalakrishnan A.V., et al. Molecular basis of fluoride toxicities: Beyond benefits and implications in human disorders. Genes Dis. 2022; 10(4): 1470–93. https://doi.org/10.1016/j.gendis.2022.09.004
  21. Exley C. Human exposure to aluminium. Environ. Sci. Process Impacts. 2013; 15(10): 1807–16. https://doi.org/10.1039/c3em00374d
  22. Ohsaka Y., Nomura Y. Rat white adipocytes activate p85/p110 PI3K and induce PM GLUT4 in response to adrenoceptor agonists or aluminum fluoride. Physiol. Int. 2016; 103(1): 35–48. https://doi.org/10.1556/036.103.2016.1.4
  23. Duan J., Chen C., Li H., Ju G., Gao A., Sun Y., et al. Multifaceted protective effects of hesperidin by aromatic hydrocarbon receptor in endothelial cell injury induced by benzopyrene. Nutrients. 2022; 14(3): 574. https://doi.org/10.3390/nu14030574
  24. Madeen E., Siddens L.K., Uesugi S., McQuistan T., Corley R.A., Smith J., et al. Toxicokinetics of benzopyrene in humans: Extensive metabolism as determined by UPLC-accelerator mass spectrometry following oral micro-dosing. Toxicol. Appl. Pharmacol. 2019; 364: 97–105. https://doi.org/10.1016/j.taap.2018.12.010
  25. Salem M.L., El-Ashmawy N.E., Abd El-Fattah E.E., Khedr E.G. Immunosuppressive role of Benzopyrene in induction of lung cancer in mice. Chem. Biol. Interact. 2021; 333: 109330. https://doi.org/10.1016/j.cbi.2020.109330

补充文件

附件文件
动作
1. JATS XML

版权所有 © , 2025



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.