Effect of an inviscid nonconducting liquid on the absorption of Lamb waves in piezoelectric plates

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The dependence of the Lamb wave attenuation due to radiation into an inviscid nonconducting liquid (radiation losses) on 1) the ratio of the phase velocities of the waves in the plate Vn and the liquid VL and on 2) the ratio of the vertical component of the surface displacement U3 to the horizontal U1 in the wave of the considered number n has been experimentally investigated. It is shown that the dominant value in the formation of radiation losses is U3/U1: for small U3/U1  1, the emission of Lamb waves into a liquid and the magnitude of radiation losses are small even at Vn  VL, for large U3/U1 ≥ 1, radiation into a liquid and the magnitude of radiation losses are large and can reach values comparable to with those for surface acoustic waves in the same material (~5 dB/mm). The dependence of the Lamb wave attenuation on the ratio of the velocities Vn and VL is much weaker.

作者简介

N. Ageykin

Kotelnikov Institute of Radioengineering and Electronics RAS

Email: anis@cplire.ru
Mohovaya str., 11, build. 7, Moscow, 125009

V. Anisimkin

Kotelnikov Institute of Radioengineering and Electronics RAS

Mohovaya str., 11, build. 7, Moscow, 125009

A. Smirnov

Kotelnikov Institute of Radioengineering and Electronics RAS

Mohovaya str., 11, build. 7, Moscow, 125009

参考

  1. Фрайден Дж. Мир электроники. Современные датчики. Справочник. М.: Техносфера, 2006.
  2. Викторов И.А. / Физические основы применения ультразвуковых волн Рэлея и Лэмба в технике. М.: Наука, 1966.
  3. Kuznetsova I.E., Zaitsev B.D., Borodina I.A. et al. // Ultrasonics. 2004. V. 42. № 1–9. P. 179.
  4. Smirnov A., Anisimkin V., Voronova N. et al. // Sensors. 2022. V. 22. № 19. Article No. 7231.
  5. Caliendo C. // Sensors. 2015. V. 15. № 6. P. 12841. https://doi.org/10.3390/s150612841
  6. Terakawa Y., Kondoh J. // Jap. J. Appl. Phys. 2020. V. 59. № SK. Article No. SKKC08.
  7. White R.M., Wicher P.J., Wenzel S.W., Zellers E.T. // IEEE Trans. 1987. V. UFFC-34. № 2. P. 162.
  8. Кузнецова И.Е., Зайцев Б.Д., Джоши С.Г., Теплых А.А. // Акуст. журн. 2007. Т. 53. № 5. С. 637.
  9. Anisimkin I.V., Anisimkin V.I. // IEEE Trans. 2006. V. UFFC-53. № 8. P. 1487.
  10. Hamidullah M., Elie-Caille C., Leblois T. // J. Phys. D: Appl. Phys. 2022. V. 55. № 9. P. 094003.
  11. Mansoorzare H., Shahraini S., Todi A. et al. // IEEE Trans. 2020. V. UFFC-67. № 6. P. 1210.
  12. Anisimkin V., Shamsutdinova E., Li P. et al. // Sensors 2022. V. 22. № 7. Article No. 2727.
  13. Anisimkin V.I., Voronova N.V. // Ultrasonics. 2021. V. 116. Article No. 106496.
  14. Anisimkin V., Kolesov V., Kuznetsova A. et al. // Sensors. 2021. V. 21. № 3. Article No. 919.
  15. Агейкин Н.А., Анисимкин В.И., Воронова Н.В., Смирнов А.В.// РЭ. 2023. Т. 68. № 10. С. 1030.
  16. Smirnov A., Anisimkin V., Ageykin N. et al.// Sensors 2024. V. 24. № 24. Article No. 7969.
  17. Adler E.L., Slaboszewics J.K., Farnell G.W., Jen C.K. // IEEE Trans. 1990. V. UFFC-37. № 3. P. 215.
  18. Slobodnik A.J.Jr., Conway E.D., Delmonico R.T. // J. Acoust. Soc. Amer. 1974. V. 56. № 4. P. 1307.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025