Preparation and properties of propylene oxide fluorotelomers

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Telomeres are formed under the action of gamma rays from a 60Co source at room temperature in solutions of tetrafluoroethylene in propylene oxide with concentrations of 0.08–4.2 mol/L; telomer chain length depends on the monomer content in the solution. Monomer consumption during irradiation was controlled calorimetrically and gravimetrically; its complete conversion is observed at irradiation doses of 10–15 kGy. Molecular-mass characteristics of radiolysis products were determined by thermogravimetry. The telomeres with chain length less than 6 form true solutions. At the degree of monomer polymerization 6–15 colloidal solutions are formed, at more than 15 – dense gels. In the structure of propylene oxide fluorotelomer, the end functional epoxy group is retained. The morphology of the coating layers was investigated by atomic force microscopy.

全文:

受限制的访问

作者简介

I. Kim

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS

编辑信件的主要联系方式.
Email: ipkim@icp.ac.ru
俄罗斯联邦, Chernogolovka

A. Shestakov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS

Email: ipkim@icp.ac.ru
俄罗斯联邦, Chernogolovka

Yu. Shulga

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS

Email: ipkim@icp.ac.ru
俄罗斯联邦, Chernogolovka

V. Gak

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS

Email: ipkim@icp.ac.ru
俄罗斯联邦, Chernogolovka

S. Allayarov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS

Email: ipkim@icp.ac.ru
俄罗斯联邦, Chernogolovka

参考

  1. Иванчев С.С., Мякин С.В.// Успехи химии. 2010. Т. 72. С. 117.
  2. White W.R., Dueser M., Reed W.A., Onishi T. // IEEE Photonics Techn. Lett. 2000. V. 12. P. 347.
  3. Gravina R., Testa G., Bernini R. // Sensors. 2009. V. 9. P. 10423.
  4. McKeen L.W. / Fluorinated coatings and finishes handbook. PDL Series. N.Y.: Andrew Publ., 2005.
  5. Ameduri B., Boutevin B. Well-architectured fluoropolymers: Synthesis, properties and applications. Amsterdam: Elsevier, 2004.
  6. Potemkin I.I., Palyulin V.V. // Polym. Sci. Ser. A. 2009. V. 51. P. 163.
  7. Erukchimovich I., Theodorakis P.E., Paul W., Binder K. // J. Chem. Phys. 2011. V. 134. 054906.
  8. Soules A., Pozos C., Ameduri B., Joly-Duhamel C., Essahli M., Boutevin B. // J. Polym. Sci. A. 2008. V. 46. P. 3214.
  9. Schuman P.D. US Patent 5690863, November 25, 1997.
  10. Mah S., Choi J., Lee H., Choi S. // Fibers and Polymers. 2000. V. 1. P. 1.
  11. Chen Y., Zhang G., Zhang H. // J. Appl. Polym. Sci. 2001. V. 82. P. 269.
  12. Casagrande C., Fabre P., Raphael E., Veyssie M. // Europhys. Lett. 1989. V. 9. P. 251.
  13. Dendukuri D., Hatton T.A., Doyle P.S. // Langmuir 2007. V. 23. P. 4669.
  14. Elemants A.A.W., Lei S., De Feyer S. // Angew. Chem. Int. Ed. 2009. V. 48. P. 7298.
  15. Cadeddu A., Ciesielski A., El Malah T., Hecht S., Samori P. // Chem. Commun. 2011. V. 47. P. 10578.
  16. Ким И.П., Шестаков А.Ф. // Химия высоких энергий. 2009. Т. 44. C. 516.
  17. Ким И.П., Перепелицина Е.О., Шестаков А.Ф., Шульга Ю.М., Куница А.А. // Химия высоких энергий. 2011. Т. 45. № 6. C. 511.
  18. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett.1996. V. 77. P. 3865.
  19. Stevens W.J., Bash H., Krauss M. // J. Chem. Phys.1984. V. 12. P. 6026.
  20. Laikov D.N. // Chem. Phys. Lett. 1997. V. 281. P. 151.
  21. Шестаков А.Ф., Ким И.П. // Химия высоких энергий. 2009. Т. 44. C. 555.
  22. Ким И.П., Колесникова А.М. // Журнал физической химии. 2011. Т. 85. C. 1782.
  23. Ким И.П. // Химия высоких энергий. 2011. Т. 45. C. 399.
  24. Ким И.П., Бендерский В.А. // Химия высоких энергий. 2011. Т. 45. C. 406.
  25. Zhang Y., Lam Y.M. // J. Colloid and Interface Sci. 2005. V. 285. P. 80.
  26. Chou S.-H., Tsao H.-K., Sheng Y.-J. // J. Chem. Phys. 2011. V. 134. P. 034904.
  27. Liang C.Y., Krimm S. // J. Chem. Phys. 1956. V. 25. P. 563.
  28. Lappan U., Geißler U., Lunkwitz K. // Radiation Physics and Chemistry. 2000. V. 59. P. 317.
  29. Smith A.L. Applied Infrared Spectroscopy: Fundamentals, Techniques, and Analytical Problem-Solving. Chichester, UK: John Wiley & Sons, 1979.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. MWD curves based on thermogravimetry data of TFE telomers in OP with the concentration of the initial solution (mol/l): 0.6 (1), 1.0 (2), 4.2 (3).

下载 (165KB)
3. Fig. 2. AFM images of fluorotelomer OP-based coatings on the surface of a deformable aluminum alloy in amplitude representation – upper panel, relief representation – lower panel. Observation area 40 × 40 μm. Coating drying was carried out at 23°C (a), 100°C (b).

下载 (653KB)
4. Fig. 3. Structure of the transition state upon detachment of the H atom by the C2F5 radical from the primary (a), secondary (b) and tertiary (c) C–H bond of the OP (a–c), as well as its addition to the O atom (d, e). Distances are given in Å.

下载 (443KB)
5. Fig. 4. Structure of the transition state upon addition of a primary (a), secondary (b) and tertiary (c) radical from OP to TFE. Distances are given in Ǻ.

下载 (153KB)
6. Fig. 5. Energy diagram of isomerization and the structure of the transition state upon addition of a secondary (a), tertiary (b) and primary (c) radical from OP. Distances are given in Å. Energy levels are given relative to the initial system C2F5● + OP.

下载 (285KB)
7. Fig. 6. IR spectrum after supercritical drying of a telomer sample obtained by telomerization of TFE in OP with an initial solution concentration of 0.8 mol/l. The inset shows a fragment of the IR spectrum in the region of stretching vibrations of C=C and C=O bonds in the “absorption” mode in the region and its approximation by individual peaks.

下载 (280KB)
8. Fig. 7. Structure of a complex of two telomeres linked by hydrogen bonds at the terminal CF2H groups and the O atom of the OP fragment with a macroradical attached to the CH3 group (a) or the oxetane cycle (b).

下载 (267KB)
9. Formula 1

下载 (31KB)

版权所有 © Russian Academy of Sciences, 2025